文科數(shù)學相對理科數(shù)學是要簡單一些,但對于學文的同學來說難度還是蠻大的,小編這里分享2017年最新全國乙卷文科數(shù)學真題試題及答案分享下載,可以用來提分或者作個參考。
高考文科數(shù)學基礎分介紹
第一,函數(shù)與導數(shù)
主要考查集合運算、函數(shù)的有關概念定義域、值域、解析式、函數(shù)的極限、連續(xù)、導數(shù)。
第二,平面向量與三角函數(shù)、三角變換及其應用
這一部分是高考的重點但不是難點,主要出一些基礎題或中檔題。
第三,數(shù)列及其應用
這部分是高考的重點而且是難點,主要出一些綜合題。
第四,不等式
主要考查不等式的求解和證明,而且很少單獨考查,主要是在解答題中比較大小。是高考的重點和難點。
第五,概率和統(tǒng)計
這部分和我們的生活聯(lián)系比較大,屬應用題。
第六,空間位置關系的定性與定量分析
主要是證明平行或垂直,求角和距離。主要考察對定理的熟悉程度、運用程度。
第七,解析幾何
高考的難點,運算量大,一般含參數(shù)。
高考文科數(shù)學必備公式
秦九韶三角形中線面積公式:
S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3
其中Ma,Mb,Mc為三角形的中線長.
平行四邊形的面積=底×高
梯形的面積=(上底+下底)×高÷2
直徑=半徑×2 半徑=直徑÷2
圓的周長=圓周率×直徑=圓周率×半徑×2
圓的面積=圓周率×半徑×半徑
長方體的表面積=(長×寬+長×高+寬×高)×2
長方體的體積 =長×寬×高
正方體的表面積=棱長×棱長×6
正方體的體積=棱長×棱長×棱長
圓柱的側面積=底面圓的周長×高
圓柱的表面積=上下底面面積+側面積
圓柱的體積=底面積×高
圓錐的體積=底面積×高÷3
長方體(正方體、圓柱體)的體積=底面積×高
定理1 關于某條直線對稱的兩個圖形是全等形
定理 2 如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線的垂直平分線
定理3 兩個圖形關于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上
逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關于這條直線對稱
勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2
勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a^2+b^2=c^2 ,那么這個三角形是直角三角形
定理 四邊形的內角和等于360°
四邊形的外角和等于360°
多邊形內角和定理 n邊形的內角的和等于(n-2)×180°
高考文科數(shù)學習點
高考文科數(shù)學知識點:導數(shù)
一、綜述
導數(shù)是微積分的初步知識,是研究函數(shù),解決實際問題的有力工具。在高中階段對于導數(shù)的學習,主要是以下幾個方面:
1.導數(shù)的常規(guī)問題:
(1)刻畫函數(shù)(比初等方法精確細微);(2)同幾何中切線聯(lián)系(導數(shù)方法可用于研究平面曲線的切線);(3)應用問題(初等方法往往技巧性要求較高,而導數(shù)方法顯得簡便)等關于次多項式的導數(shù)問題屬于較難類型。
2.關于函數(shù)特征,最值問題較多,所以有必要專項討論,導數(shù)法求最值要比初等方法快捷簡便。
3.導數(shù)與解析幾何或函數(shù)圖象的混合問題是一種重要類型,也是高考中考察綜合能力的一個方向,應引起注意。
二、知識整合
1.導數(shù)概念的理解。
2.利用導數(shù)判別可導函數(shù)的極值的方法及求一些實際問題的最大值與最小值。
復合函數(shù)的求導法則是微積分中的重點與難點內容。課本中先通過實例,引出復合函數(shù)的求導法則,接下來對法則進行了證明。
3.要能正確求導,必須做到以下兩點:
(1)熟練掌握各基本初等函數(shù)的求導公式以及和、差、積、商的求導法則,復合函數(shù)的求導法則。
(2)對于一個復合函數(shù),一定要理清中間的復合關系,弄清各分解函數(shù)中應對哪個變量求導。
高考文科數(shù)學知識點:不等式
不等式這部分知識,滲透在中學數(shù)學各個分支中,有著十分廣泛的應用。因此不等式應用問題體現(xiàn)了一定的綜合性、靈活多樣性,對數(shù)學各部分知識融會貫通,起到了很好的促進作用。在解決問題時,要依據(jù)題設與結論的結構特點、內在聯(lián)系、選擇適當?shù)慕鉀Q方案,最終歸結為不等式的求解或證明。不等式的應用范圍十分廣泛,它始終貫串在整個中學數(shù)學之中。諸如集合問題,方程(組)的解的討論,函數(shù)單調性的研究,函數(shù)定義域的確定,三角、數(shù)列、復數(shù)、立體幾何、解析幾何中的最大值、最小值問題,無一不與不等式有著密切的聯(lián)系,許多問題,最終都可歸結為不等式的求解或證明。
知識整合
1.解不等式的核心問題是不等式的同解變形,不等式的性質則是不等式變形的理論依據(jù),方程的根、函數(shù)的性質和圖象都與不等式的解法密切相關,要善于把它們有機地聯(lián)系起來,互相轉化。在解不等式中,換元法和圖解法是常用的技巧之一。通過換元,可將較復雜的不等式化歸為較簡單的或基本不等式,通過構造函數(shù)、數(shù)形結合,則可將不等式的解化歸為直觀、形象的圖形關系,對含有參數(shù)的不等式,運用圖解法可以使得分類標準明晰。
2.整式不等式(主要是一次、二次不等式)的解法是解不等式的基礎,利用不等式的性質及函數(shù)的單調性,將分式不等式、絕對值不等式等化歸為整式不等式(組)是解不等式的基本思想,分類、換元、數(shù)形結合是解不等式的常用方法。方程的根、函數(shù)的性質和圖象都與不等式的解密切相關,要善于把它們有機地聯(lián)系起來,相互轉化和相互變用。
3.在不等式的求解中,換元法和圖解法是常用的技巧之一,通過換元,可將較復雜的不等式化歸為較簡單的或基本不等式,通過構造函數(shù),將不等式的解化歸為直觀、形象的圖象關系,對含有參數(shù)的不等式,運用圖解法,可以使分類標準更加明晰。
4.證明不等式的方法靈活多樣,但比較法、綜合法、分析法仍是證明不等式的最基本方法。要依據(jù)題設、題斷的結構特點、內在聯(lián)系,選擇適當?shù)淖C明方法,要熟悉各種證法中的推理思維,并掌握相應的步驟,技巧和語言特點。比較法的一般步驟是:作差(商)→變形→判斷符號(值)。
高考文科數(shù)學知識點:立體幾何
1.有關平行與垂直(線線、線面及面面)的問題,是在解決立體幾何問題的過程中,大量的、反復遇到的,而且是以各種各樣的問題(包括論證、計算角、與距離等)中不可缺少的內容,因此在主體幾何的總復習中,首先應從解決“平行與垂直”的有關問題著手,通過較為基本問題,熟悉公理、定理的內容和功能,通過對問題的分析與概括,掌握立體幾何中解決問題的規(guī)律--充分利用線線平行(垂直)、線面平行(垂直)、面面平行(垂直)相互轉化的思想,以提高邏輯思維能力和空間想象能力。
2.判定兩個平面平行的方法:
(1)根據(jù)定義--證明兩平面沒有公共點;
(2)判定定理--證明一個平面內的兩條相交直線都平行于另一個平面;
(3)證明兩平面同垂直于一條直線。
3.兩個平面平行的主要性質:
(1)由定義知:“兩平行平面沒有公共點”;
(2)由定義推得:“兩個平面平行,其中一個平面內的直線必平行于另一個平面”;
(3)兩個平面平行的性質定理:“如果兩個平行平面同時和第三個平面相交,那么它們的交線平行”;
(4)一條直線垂直于兩個平行平面中的一個平面,它也垂直于另一個平面;
(5)夾在兩個平行平面間的平行線段相等;
(6)經過平面外一點只有一個平面和已知平面平行。